Download e-book for kindle: Representation Theory of Finite Groups [Lecture notes] by Anupam Singh By Anupam Singh

Best algebra & trigonometry books

William G. McCallum, Eric Connally, Deborah Hughes-Hallett's Algebra: Form and Function PDF

This e-book deals a clean method of algebra that specializes in instructing readers find out how to really comprehend the foundations, instead of viewing them purely as instruments for different kinds of arithmetic. It depends on a storyline to shape the spine of the chapters and make the fabric extra enticing. Conceptual workout units are incorporated to teach how the knowledge is utilized within the actual international.

Get Diskrete Mathematik für Einsteiger: Bachelor und Lehramt PDF

Dieses Buch eignet sich hervorragend zur selbstständigen Einarbeitung in die Diskrete Mathematik, aber auch als Begleitlektüre zu einer einführenden Vorlesung. Die Diskrete Mathematik ist ein junges Gebiet der Mathematik, das eine Brücke schlägt zwischen Grundlagenfragen und konkreten Anwendungen. Zu den Gebieten der Diskreten Mathematik gehören Codierungstheorie, Kryptographie, Graphentheorie und Netzwerke.

Extra resources for Representation Theory of Finite Groups [Lecture notes]

Example text

Suppose that v ⊗ w ∈ Sym2 (V ) and g ∈ G then we have θ(ρ(g)(v ⊗ w)) = θ ρ(g) λij (vi ⊗ vj + vj ⊗ vi ) λij (ρ(g)vi ⊗ ρ(g)vj + ρ(g)vj ⊗ ρ(g)vi ) = θ = λij [θ(ρ(g)vi ⊗ ρ(g)vj ) + θ(ρ(g)vj ⊗ ρ(g)vi )] = λij [ρ(g)vj ⊗ ρ(g)vi + ρ(g)vi ⊗ ρ(g)vj )] λij (vj ⊗ vi + vi ⊗ vj ) = ρ(g) = ρ(g)(v ⊗ w). We also see that Sym2 (V ) ∩ Λ2 (V ) = {0}. Also their individual dimensions add up to n(n+1) + n(n−1) = n2 = dim(V ⊗ V ), hence we have V ⊗ V = Sym2 (V ) ⊕ Λ2 (V ). 2. The characters of Sym2 (V ) and Λ2 (V ) are χS and χA respectively given by 1 2 χ (g) + χ(g 2 ) χS (g) = 2 1 2 χA (g) = χ (g) − χ(g 2 ) 2 Proof.

Then from the proof of previous theorem it follows that {(ei ⊗ ej − ej ⊗ ei ) | i < j} is an eigen basis for Λ2 (V ) with corresponding eigen values {λi λj | i < j}. We now have χA (g) = T r(ρ ⊗ ρ)(g) = λi λj = i

Then χ(g) = i aii (g) and χ (g) = j bjj (g). 6 part 4. Using the similar argument we get χ, χ = (χ, χ) = ( i aii , j bjj ) = n 1 i=1 n = 1 where n is the dimension of the representation ρ. 2. The number of irreducible characters are finite. Proof. Since the irreducible characters form an orthonormal set they are linearly independent. Hence their number has to be less than the dimension of C[G] which is |G|, hence finite. Once we prove that two representations are isomorphic if and only if their characters are same this corollary will also give that there are finitely many non-isomorphic irreducible representations.