H. Tachikawa, Claus M. Ringel's Quasi-Frobenius Rings and Generalizations QF-3 and QF-1 PDF

By H. Tachikawa, Claus M. Ringel

ISBN-10: 3540065016

ISBN-13: 9783540065012

Show description

Read or Download Quasi-Frobenius Rings and Generalizations QF-3 and QF-1 Rings PDF

Similar algebra & trigonometry books

Download PDF by William G. McCallum, Eric Connally, Deborah Hughes-Hallett: Algebra: Form and Function

This publication bargains a clean method of algebra that specializes in instructing readers find out how to actually comprehend the rules, instead of viewing them simply as instruments for other kinds of arithmetic. It depends upon a storyline to shape the spine of the chapters and make the fabric extra attractive. Conceptual workout units are incorporated to teach how the data is utilized within the actual international.

Get Diskrete Mathematik für Einsteiger: Bachelor und Lehramt PDF

Dieses Buch eignet sich hervorragend zur selbstständigen Einarbeitung in die Diskrete Mathematik, aber auch als Begleitlektüre zu einer einführenden Vorlesung. Die Diskrete Mathematik ist ein junges Gebiet der Mathematik, das eine Brücke schlägt zwischen Grundlagenfragen und konkreten Anwendungen. Zu den Gebieten der Diskreten Mathematik gehören Codierungstheorie, Kryptographie, Graphentheorie und Netzwerke.

Extra info for Quasi-Frobenius Rings and Generalizations QF-3 and QF-1 Rings

Example text

I) If g is a non-commutative simple complex Lie algebra, then ν is non-trivial precisely in the cases g = Al , l ≥ 2; D2m+1 , m ≥ 1; E6 . In these cases, ν is the only non-trivial symmetry of the Dynkin diagram. s (ii) If g = i=1 gi , where gi are simple, then ν ∈ Aut Π induces the corresponds ing involution νi on each component of the decomposition Π = i=1 Πi , where Πi is the system of simple roots of gi , i = 1, . . 23)). (iii) ν lies in the centre Z(Aut Π). Proof. (i) We have only to investigate the cases g = Al , l ≥ 2, g = Dl , l ≥ 3, and g = E6 , since for other simple g the Dynkin diagram has no symmetries (see Table 1).

Choosing h0 ∈ t in such a way that αi (h0 ) = log ci , i = 1, . . , l, we see that θ and exp(ad h0 ) coincide on the generators ei , fi . Hence θ = exp(ad h0 ) ∈ T . We are now going to extend this semidirect decomposition to the entire group Aut g. Theorem 1. Let g be a complex semisimple Lie algebra. Then Aut g = Int g Ψ(Aut Π) , (3) and the corresponding projection Aut g → Aut Π coincides with Φ on Aut(g, t, Π). Proof. First we prove that Aut g = (Int g) Aut(g, t, Π). 1), there exists ϕ ∈ Int g such that ϕθ(t) = t.

Z ∈ p. Since the mapping µ(id × exp ad) : K × p → Aut g0 is a homeomorphism, it should map the connected components of K × p onto those of Aut g0 . It follows that K ◦ × p is mapped onto Int g0 . Hence µ(K ◦ × P ) = Int g0 . The decomposition Int g0 = K ◦ P implies the last assertion of the theorem. 40 §5. Cartan decompositions and maximal compact subgroups Corollary. The subgroups K and K ◦ are maximal compact subgroups of the Lie groups Aut g0 and Int g0 , respectively. Proof. Suppose that we have a linear group L such that K L ⊂ Aut g0 .

Download PDF sample

Quasi-Frobenius Rings and Generalizations QF-3 and QF-1 Rings by H. Tachikawa, Claus M. Ringel

by Richard

Rated 4.96 of 5 – based on 7 votes